Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Aims.We aim to probe the magnetic field geometry and particle acceleration mechanism in the relativistic jets of supermassive black holes. Methods.We conducted a polarimetry campaign from radio to X-ray wavelengths of the high-synchrotron-peak (HSP) blazar Mrk 421, including Imaging X-ray Polarimetry Explorer (IXPE) measurements from 2022 December 6–8. During the IXPE observation, we also monitored Mrk 421 usingSwift-XRT and obtained a single observation withXMM-Newtonto improve the X-ray spectral analysis. The time-averaged X-ray polarization was determined consistently using the event-by-event Stokes parameter analysis, spectropolarimetric fit, and maximum likelihood methods. We examined the polarization variability over both time and energy, the former via analysis of IXPE data obtained over a time span of 7 months. Results.We detected X-ray polarization of Mrk 421 with a degree of ΠX = 14 ± 1% and an electric-vector position angleψX = 107 ± 3° in the 2–8 keV band. From the time variability analysis, we find a significant episodic variation inψX. During the 7 months from the first IXPE pointing of Mrk 421 in 2022 May,ψXvaried in the range 0° to 180°, while ΠXremained relatively constant within ∼10–15%. Furthermore, a swing inψXin 2022 June was accompanied by simultaneous spectral variations. The results of the multiwavelength polarimetry show that ΠXwas generally ∼2–3 times greater than Π at longer wavelengths, whileψfluctuated. Additionally, based on radio, infrared, and optical polarimetry, we find that the rotation ofψoccurred in the opposite direction with respect to the rotation ofψXand over longer timescales at similar epochs. Conclusions.The polarization behavior observed across multiple wavelengths is consistent with previous IXPE findings for HSP blazars. This result favors the energy-stratified shock model developed to explain variable emission in relativistic jets. We considered two versions of the model, one with linear and the other with radial stratification geometry, to explain the rotation ofψX. The accompanying spectral variation during theψXrotation can be explained by a fluctuation in the physical conditions, for example in the energy distribution of relativistic electrons. The opposite rotation direction ofψbetween the X-ray and longer wavelength polarization accentuates the conclusion that the X-ray emitting region is spatially separated from that at longer wavelengths. Moreover, we identify a highly polarized knot of radio emission moving down the parsec-scale jet during the episode ofψXrotation, although it is unclear whether there is any connection between the two events.more » « less
- 
            Abstract We present the IXPE observation of GRB 221009A, which includes upper limits on the linear polarization degree of both prompt and afterglow emission in the soft X-ray energy band. GRB 221009A is an exceptionally bright gamma-ray burst (GRB) that reached Earth on 2022 October 9 after traveling through the dust of the Milky Way. The Imaging X-ray Polarimetry Explorer (IXPE) pointed at GRB 221009A on October 11 to observe, for the first time, the 2–8 keV X-ray polarization of a GRB afterglow. We set an upper limit to the polarization degree of the afterglow emission of 13.8% at a 99% confidence level. This result provides constraints on the jet opening angle and the viewing angle of the GRB, or alternatively, other properties of the emission region. Additionally, IXPE captured halo-rings of dust-scattered photons that are echoes of the GRB prompt emission. The 99% confidence level upper limit to the prompt polarization degree depends on the background model assumption, and it ranges between ∼55% and ∼82%. This single IXPE pointing provides both the first assessment of X-ray polarization of a GRB afterglow and the first GRB study with polarization observations of both the prompt and afterglow phases.more » « less
- 
            Abstract We report the first >99% confidence detection of X-ray polarization in BL Lacertae. During a recent X-ray/ γ -ray outburst, a 287 ks observation (2022 November 27–30) was taken using the Imaging X-ray Polarimetry Explorer (IXPE), together with contemporaneous multiwavelength observations from the Neil Gehrels Swift observatory and XMM-Newton in soft X-rays (0.3–10 keV), NuSTAR in hard X-rays (3–70 keV), and optical polarization from the Calar Alto and Perkins Telescope observatories. Our contemporaneous X-ray data suggest that the IXPE energy band is at the crossover between the low- and high-frequency blazar emission humps. The source displays significant variability during the observation, and we measure polarization in three separate time bins. Contemporaneous X-ray spectra allow us to determine the relative contribution from each emission hump. We find >99% confidence X-ray polarization Π 2 – 4 keV = 21.7 − 7.9 + 5.6 % and electric vector polarization angle ψ 2–4keV = −28.°7 ± 8.°7 in the time bin with highest estimated synchrotron flux contribution. We discuss possible implications of our observations, including previous IXPE BL Lacertae pointings, tentatively concluding that synchrotron self-Compton emission dominates over hadronic emission processes during the observed epochs.more » « less
- 
            Abstract Blazars are a class of jet-dominated active galactic nuclei with a typical double-humped spectral energy distribution. It is of common consensus that the synchrotron emission is responsible for the low frequency peak, while the origin of the high frequency hump is still debated. The analysis of X-rays and their polarization can provide a valuable tool to understand the physical mechanisms responsible for the origin of high-energy emission of blazars. We report the first observations of BL Lacertae (BL Lac) performed with the Imaging X-ray Polarimetry Explorer, from which an upper limit to the polarization degree Π X < 12.6% was found in the 2–8 keV band. We contemporaneously measured the polarization in radio, infrared, and optical wavelengths. Our multiwavelength polarization analysis disfavors a significant contribution of proton-synchrotron radiation to the X-ray emission at these epochs. Instead, it supports a leptonic origin for the X-ray emission in BL Lac.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
